Instrucciones y Manual de Operación

X96S MEDIDOR DE NIVEL

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION 8050 Production Drive • Florence, KY 41042 Phone: (859) 342-8500 • Fax: (859) 342-6426 • Website: www.ronan.com • E-mail: ronan@ronanmeasure.com

Tabla de Contenidos

'isión General	
Ventajas	
Conceptos Básicos	
Comunicaciones	,
Variables	,
Teoría	
Teoría de Medición por Radiación	,
Principios de Operación	
Contraseña	
Menús/Operación	
Árboles del Menú	(
Menú Root (Raíz)	
Menú Digital Outputs (Salidas Digitales)	
Menú Digital Inputs (Entradas Digitales)	2
Menú Calibration (Calibración)	
Visualizador Local del X96S	2
Menús de Navegación	2
Editando Valores	2
Visualizador Local del X96 Vs Calibrador 475	2
Instalación	2
Etiqueta de Cierre	2′
Precauciones de Seguridad	2
Montaje Mecánico	
Instalación Eléctrica del Cableado Interconectado	
Verificación del Microprocesador	
Encendido	
Contraseña	
Calibración	
Modos de Referencia	
Configuración	
Documentación	
Detector	
Detector de Centelleo	
Cámara de IONES	4
Electrónica	4
X96-2009PL1	4
Opciones	4
X96S Números de Parte del Chasis Mecánico	4
X96S Números de Parte del Módulo Electrónico	
Diseños	

8050 Production Drive • Florence, KY 41042

Visión General

El X96S es una familia de productos de medición que tiene el propósito de reemplazar a la familia de productos obsoleto X96N y actual X99. Estos productos:

- Usan técnicas de medición nuclear,
- soportan todas las características de los productos obsoleto X96N y actual X99
- soportan hasta 32 detectores centellantes o ionizantes
- interfaz HART opcional
- opciones de interface de usuario mejoradas¹,
- más funcionalidades de usuario,
- más flexibilidad en el producto.

Ventajas

- Montajes Externos a Estanques Existentes
- Visualizaciones en Unidades Personalizadas
- La Mayoría de las Aplicaciones puede ser resuelta con fuentes de baja energía
- No están afectados por: -temperaturas extremas -procesos cáusticos
 - -procesos estériles

Ventajas de la Radiación Gamma

- Se monta externamente al tuvo o estanque (no hay componentes expuestos al material de proceso)
- Pasa a través del material de proceso
- No hace al material radiactivo
- No cambia el material
- Puede ser protegido por plomo

Ventajas del X96S

- Comunicaciones HART
- Interface idéntica tanto en el visualizador local como vía HART
- Transmisor ciego en el detector en diseño contenedor propio
- Configuración personalizable del visualizador
- Montaje en superficie, panel o rack disponible
- Montable en terreno
- Botón presionable para calibración
- Monitor de tubería vacía

¹ Esto incluye la habilidad de tener una interface de usuario simple o compleja, una interface de usuario remota, o incluso sin interface de usuario.

Conceptos Básicos

Comunicaciones

El medidor de Nivel Ronan X96S provee comunicaciones de lazo de corriente 4-20 mA y comunicaciones HART.

4-20 MA

Por muchos años, el estándar de comunicación de campo para equipamientos de automatización de proceso ha sido una señal de lazo de corriente 4-20 mA. La corriente varía proporcionalmente a la variable de proceso que se está representando. En aplicaciones típicas, una señal de 4mA corresponderá al límite más bajo (0%) del rango calibrado y 20mA corresponderá al nivel más alto (100%) del rango calibrado. Entonces, si el sistema está calibrado de 1 a 3 pies, entonces la corriente analógica de 12mA (50% del rango) corresponderá a un nivel de 2 pies.

HART

El Protocolo de Comunicaciones de Campo HART extiende el estándar del lazo de corriente 4-20mA para mejorar la comunicación con instrumentos de campo inteligentes. El protocolo HART fue diseñado específicamente para usarse con mediciones inteligentes e instrumentos de control que tradicionalmente se comunicarían usando señales analógicas de 4-20mA. HART preserva la señal de 4-20mA y habilita una comunicación digital de dos vías que ocurre sin perturbar la integridad de la señal de 4-20mA. A diferencia de otras tecnologías de comunicación digital, el protocolo HART mantiene la compatibilidad con sistemas de 4-20mA existentes, y al hacer esto, provee al usuario con una solución de compatibilidad con tecnología anterior. El Protocolo de Comunicaciones HART está bien establecido como el estándar "de facto" de la industria para comunicaciones de campo 4-20mA mejoradas digitalmente.

La capacidad de comunicaciones mejoradas de los instrumentos de campo inteligentes que emplean el protocolo HART, ofrece significativamente mayores funcionalidades y un rendimiento mejorado sobre los dispositivos analógicos de 4-20mA tradicionales. El protocolo HART le permite a la variable de proceso continuar siendo transmitida por la señal analógica de 420mA y adicionalmente información perteneciente a otra variable, parámetros, configuración de dispositivo, calibración, y diagnósticos del dispositivo a ser transmitidos digitalmente al mismo tiempo. Entonces, una abundancia de información adicional relacionada con la operación de planta está disponible para el control central o monitorear sistemas a través de HART.

Variables

Hay dos tipos de variables, comunicaciones variables y dispositivos variables.

Comunicaciones Variables

HART define cuatro dispositivos variables, PV (Variable Primaria), SV (Variable Secundaria), TV (Terciaria), and QV (Cuaternaria). PV está asignada al primer lazo de 4-20mA. HART también se comunica en este lazo. SV está asignado a un lazo opcional secundario de 4-20mA.

Variables del Dispositivo

El medidor de Nivel Ronan X96S tiene 2 variables de dispositivo:

Variables de Dispositivo	Valor
Nivel	Nivel
Temp. del Cabezal	Temperatura del Cabezal

Variables de Configuración

El medidor de Nivel Ronan X96S tiene muchas variables de configuración que se accesan a través de sus menús.

8050 Production Drive • Florence, KY 41042

Teoría Teoría de Medición por Radiación

La Medición por radiación opera en el principio de la absorción y transmisión de radiación.

Un haz de radiación gamma es dirigido desde el contenedor de fuente, a través del estanque y su material de proceso, y a la superficie del detector.

La radiación que no es *absorbida* por el material a través del cual pasa, es *transmitido* a la superficie del detector. La medición de proceso es posible porque la cantidad de radiación *absorbida y transmitida* es predecible.

La radiación absorbida es proporcional al nivel de material de proceso en el estanque mientras que la radiación transmitida es inversamente proporcional con el nivel de material de proceso en el estanque.

Entonces, un incremento en el nivel de proceso resulta en una reducción de la radiación transmitida.

Ya que la radiación que no es *absorbida* está siendo *transmitida*, el nivel de proceso puede ser inferido al medir la cantidad de radiación que llega al detector en cualquier punto en el tiempo. La señal de salida del detector, en cuentas, también *varía inversamente* al nivel de proceso.

Cuando el nivel de proceso es bajo, el detector está expuesto a una cantidad máxima de radiación que produce una salida de cuentas ALTA. Cuando el nivel de proceso es alto, el material de proceso "protege" al detector e impide que la radiación llegue al detector, produciendo una salida de cuentas BAJA.

El Microprocesador X96S convierte la señal del detector a unidades de medición de nivel de usuario: m, mm, cm, pulgadas, pies.

El X96S visualiza el rango de medición de salida en las unidades de usuario seleccionada. El "cero" del rango de medición representa el nivel más bajo de interés, mientras que el "span" del rango de medición representa el nivel más alto de interés.

La reducción de la señal de "ruido" debido a la radiación estática es manejado en la etapa de procesamiento de señal conocido como filtración digital. La filtración digital es una forma de promediar estadísticamente radiaciones usadas para suavizar, o reducir, radiaciones aleatorias como también ruidos relacionados a proceso. Al incrementar la "constante de tiempo" del filtro digital se disminuye la señal de ruido.

El seguimiento dinámico le permite a la respuesta del medidor pasar por alto temporalmente al filtro digital. Esto es de ayuda en algunos procesos donde los cambios repentinos o drásticos en el proceso deben ser observados en su estado real, o no filtrado.

El software también compensa el decaimiento de la actividad de la fuente radiactiva. Ajustes en tiempo real se hacen automáticamente para la tasa de decaimiento, o la vida media de la fuente.

Principios de Operación

La señal sin procesar de salida del detector es procesada a través de varias etapas del software en el X96S.

Algunas de las etapas más significantes del procesamiento de señal son:

- Conversión de Unidades- conversión de las cuentas en unidades de nivel seleccionadas por el usuario
- Rango de Medición-salida de 4-20 mA definida por el rango seleccionado por usuario en unidades seleccionadas por el usuario.
- Filtración Digital- suavizamiento de la señal para reducir el ruido de la radiación estática.
- Seguimiento Dinámico respuesta del medidor rápida a cambios rápidos en el proceso.
- Compensación por Decaimiento de la Fuente compensación automática por decaimiento del radioisótopo.
- Calibración (Referencia) calibración del medidor para el proceso del usuario.

El procedimiento de Calibración (o Referencia) relaciona la salida del detector (cuentas) a valores numéricos que representa en forma precisa el nivel actual del proceso.

El algoritmo de nivel usado por el software X96S es una función de transferencia simple. Es decir, la relación entre la salida del detector y el nivel de proceso es matemáticamente expresado como:

Nivel =
$$L_0 + \left(\left(\frac{I - I_0}{I_f - I_0} \right) x (L_f - L_0) \right)$$

Donde:

- I_f = señal del detector con nivel (L_f) calibrado (lleno) en el estanque
- I_0 = señal del detector con nivel (L_0) de referencia (baja) en el estanque
- I = señal actual del detector
- $L_0 = nivel @ de referencia (nivel bajo)$
- $L_f = nivel @ de calibración (nivel alto)$

Contraseña

Nota:

Para accesar al Menú de Programación, la Contraseña es 101010.

Paso 1: Encienda el equipo – Debería estar ahora en la Pantalla de Estado.

Paso 2: Presionar F3 para retroceder.

Paso 3: Ahora introduzca la contraseña. (Todos los dígitos están en 000000 en este punto.)

Presionar	$\widehat{\Pi}$	para hacer que el dígito sea # uno
Presionar		2 veces (El tercer dígito debe estar destacado.)
Presionar	Î	para hacer que el dígito sea # uno
Presionar	$\Box \rangle$	2 veces (El quinto dígito debe estar destacado.)
Presionar	Î	para hacer que el dígito sea # uno
Presionar F4	(enter)	

Nota: Si se introdujo la contraseña incorrecta, presionar **F1** (**ALL0**) para poner todos los dígitos al número 0 y usted puede empezar a reingresar la contraseña desde el principio. Al presionar **F2** (**RST0**) pondrá el dígito individual que está destacado de vuelta al número 0.

Nota: Por razones de seguridad, cada dígito siempre se mostrará como un asterisco.

Menús/Operación Árboles del Menú

El Medidor de Nivel Ronan X96S usa un sistema de menú con estructura de árbol.

Figura 3-1 - Raíz, Variables y Menús del Visualizador

Figura 3-2 – Menús de Configuración (1 a 3)

Figura 3-2 – Menús de Configuración (2 a 3)

Figura 3-2 – Menús de Configuración (3 a 3)

9

Figura 3-3 - Menús de Salidas Digitales y Entradas Digitales

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

8050 Production Drive • Florence, KY 41042

Figura 3-4 – Menús de Calibración

Menú Root (Raíz)

El menú raíz se titula "Ronan X96S – Level". Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Variables	Al seleccionar esta opción lleva al usuario al menú Variables
Displays	Al seleccionar esta opción lleva al usuario al menú Displays
Configuration	Al seleccionar esta opción lleva al usuario al menú Configuration
Digital Outputs	Al seleccionar esta opción lleva al usuario al menú Digital Outputs
Digital Inputs	Al seleccionar esta opción lleva al usuario al menú Digital Inputs
Calibration	Al seleccionar esta opción lleva al usuario al menú Calibration

Menú Variables (Variables)

El menú titulado "Variables" contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Variable Mapping	Al seleccionar esta opción lleva al usuario al menú Variable Mapping
PV	Muestra el valor actual de PV (la Variable Primaria)
SV	Muestra el valor actual de SV (la Variable Secundaria)
TV	Muestra el valor actual de TV (la Variable Terciaria)
QV	Muestra el valor actual de QV (la Variable Cuaternaria)
Level	Muestra el valor actual del Nivel Variable
Head Temp	Muestra el valor actual de Head Temp (la Temperatura del Cabezal)

Menú Variable Mapping (Mapeo de Variables)

El menú "Variable Mapping" permite al usuario seleccionar la variable del dispositivo a ser mapeada a PV, SV, TV, y QV. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
PV is	Muestra la variable del dispositivo asignado a PV y permite al usuario cambiar la selección
SV is	Muestra la variable del dispositivo asignado a SV y permite al usuario cambiar la selección
TV is	Muestra la variable del dispositivo asignado a TV y permite al usuario cambiar la selección
QV is	Muestra la variable del dispositivo asignado a QV y permite al usuario cambiar la selección

Cada PV, SV, TV, y QV puede seleccionar uno de lo siguiente:

SELECCIÓN	SIGNIFICADO
Level	Nivel
Head Temp	Temperatura del cabezal (si estuviese disponible)
Not Assigned	Línea en blanco

Menú Displays (Visualizaciones)

El menú titulado "Displays" contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Status Display	Al seleccionar esta opción lleva al usuario al menú de Status Display

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Status Display (Visualización de Estado)

El menú Status Display se usa para configurar la visualización de estado del dispositivo. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Analog Bar	Muestra el estado actual de la visualización de la barra analógica (habilitada o no
	habilitada) y permite al usuario cambiar el estado.
Line 1:	Muestra los datos a visualizar en la línea 1 del visualizador de estado y permite al
	usuario cambiar la selección
Line 2:	Muestra los datos a visualizar en la línea 2 del visualizador de estado y permite al
	usuario cambiar la selección
Line 3:	Muestra los datos a visualizar en la línea 3 del visualizador de estado y permite al
	usuario cambiar la selección
Line 4:	Muestra los datos a visualizar en la línea 4 del visualizador de estado y permite al
	usuario cambiar la selección
Line 5:	Muestra los datos a visualizar en la línea 5 del visualizador de estado y permite al
	usuario cambiar la selección
Line 6:	Muestra los datos a visualizar en la línea 6 del visualizador de estado y permite al
	usuario cambiar la selección
Line 7:	Muestra los datos a visualizar en la línea 7 del visualizador de estado y permite al
	usuario cambiar la selección
Line 8:	Muestra los datos a desplegar en la línea 8 del visualizador de estado y permite al
	usuario cambiar la selección

Cada línea puede seleccionar uno de lo siguiente:

SELECTION	SIGNIFICADO
Level	Nivel
Head Temp	Temperatura del cabezal (si es que está disponible)
4-20 mA	4-20 mA salida de nivel
Raw	Cuentas sin procesar (desde el detector centellante) o medición analógica sin procesar
	(desde el detector de ionización)
Date & Time	Fecha y hora actual
Not Assigned	Línea en blanco

Menú Configuration (Configuración)

El menú Configuration Menu es usado para accesar a los menús de configuración. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Operation	Al seleccionar esta opción lleva al usuario al menú Operation
Level Config	Al seleccionar esta opción lleva al usuario al menú Level Config
Head Temp Config	Al seleccionar esta opción lleva al usuario al menú Head Temp Config
Alarms	Al seleccionar esta opción lleva al usuario al menú Alarm
Hardware	Al seleccionar esta opción lleva al usuario al menú Hardware
HART	Al seleccionar esta opción lleva al usuario al menú HART
System	Al seleccionar esta opción lleva al usuario al menú System

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Operation (Operaciones)

El menú Operation es usado para accesar los menús y variables que controlan el procesamiento de los datos de nivel. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Filtering	Al seleccionar esta opción lleva al usuario al menú Filtering
Empty Clamp	Al seleccionar esta opción lleva al usuario al menú Empty Clamp
Detector Fault	Al seleccionar esta opción lleva al usuario al menú Detector Fault
Linearization	Al seleccionar esta opción lleva al usuario al menú Linearization
Scan Time	Muestra la cantidad de tiempo para acumular cada muestra de nivel y permite al
	usuario cambiar el valor de tiempo.

Menú Filtering (Filtración)

El menú Filtering es usado para configurar los parámetros asociados con el filtro de medición de nivel. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Dyn Track	Muestra el estado actual del filtro de seguimiento dinámico (habilitado o no
	habilitado) y permite al usuario cambiar el estado.
Threshold	Muestra el número máximo de cuentas sin proceso (para el centelleo) o valores
	analógicos sin procesamiento (para la cámara de iones) que la entrada puede variar del
	valor esperado sin considerar que las cuentas/valor puedan estar potencialmente
	erróneos. También permite al usuario cambiar este número.
Walk Avg	Muestra el número de elementos a mantener y promediar en el filtro de promedio de
	paso. También permite al usuario cambiar este número.
Slope Smpls	Muestra el número de mediciones a hacer entre cada recálculo de la pendiente de
	densidad. También permite al usuario cambiar este número.
Noise Filter	Muestra el número máximo de mediciones erróneas potenciales consecutivos hacia el
	puente antes de decidir que un cambio de escalón ha ocurrido en el valor de nivel.
	También permite al usuario cambiar este número.
Monitor	Muestra el estado actual del mecanismo de filtración.

Monitor (estado de filtro) es uno de lo siguiente:

ELEMENTO	SIGNIFICADO
ERROR	El filtro no está inicializado (este estado no debería ocurrir durante la operación
	normal del Medidor de Nivel X96S)
FILL	La memoria intermedia de promedio de marcha se está llenando.
TRACK	La memoria intermedia de promedio de marcha se llena y el filtro está siguiendo los
	cambios en el valor de nivel.
REFILL	Un escalón ha ocurrido y la memoria intermedia de promedio de marcha se está
	rellenando.

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Linearization (Linealización)

El X96S es capaz de realizar una linealización multi-punto de los datos de nivel cuando sea requerido por una aplicación. La tabla de linealización contiene 10 entradas, numeradas del 1 al 32. Cada entrada consiste de un valor medido, un valor actual, y una bandera que indica si la entrada está en uso².

El menú Linearization es usado para controla el mecanismo de linealización. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Linearize	Muestra el estado actual del mecanismo de Linealización (habilitado o deshabilitado) y
	permite al usuario cambiar el estado.
Clear Table	Este elemento invoca un método que limpia todas las entradas en la tabla de
	linealización.
Config Linearize	Al seleccionar este elemento lleva al usuario al menú de Config Linearize.

Menú Config Linearize (Configuración de Linealización)

El menú Config Linearize es usado para configurar los parámetros asociados con la linealización de los datos de medidos. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Table Entry #	Muestra, y permite al usuario seleccionar, una entrada en la tabla de linealización.
Entry Used	Muestra si una entrada está en uso o no.
Measured	Muestra, y permite al usuario establecer, el valor medido asociado con esta entrada en
	la tabla de linealización. Este valor es calculado por el X96S.
Actual	Muestra, y permite al usuario establecer, el valor actual asociado con esta entrada en la
	tabla de linealización. Este valor es el resultado del conocimiento del nivel actual, y se
	compara con valor Measured de arriba.
Set Entry	Este elemento invoca un método que establece una entrada en la tabla.
Remove Entry	Este elemento invoca un método que remueve una entrada de la tabla.

Menú Level Config (Configuración de Nivel)

El menú Level Config es usado para configurar los parámetros asociados con la medición de nivel. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Units	Muestra, y permite al usuario establecer, las unidades de nivel a usarse.
Low Range	Muestra, y permite al usuario establecer, el valor de nivel a ser mapeado a 4mA en el bucle de salida de corriente, si se selecciona el nivel para controlar el bucle de corriente.
High Range	Muestra, y permite al usuario establecer, el valor de nivel a ser mapeado a 20mA en el bucle de salida de corriente, si se selecciona el nivel para controlar el bucle de corriente.

Units (Unidades) es uno de lo siguiente:

Unidades	SIGNIFICADO
ft	pies
m	metros
in	pulgadas
Cm	centímetros
mm	milímetros

² No todas las entradas necesitan ser usadas y tampoco necesitan ser usadas en un orden en particular.

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Head Temp Config (Configuración de Temperatura de Cabezal)

El menú Head Temp Config es usado para configurar los parámetros asociados con la temperatura de la electrónica del detector usada para la medición. Esta función es usada fundamentalmente para aplicaciones de alta temperatura donde la temperatura excede las especificaciones de temperatura de la electrónica. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Temp Units	Muestra, y permite al usuario establecer, las unidades a ser usadas por la temperatura
	de cabezal.
Low Range	Muestra, y permite al usuario establecer, el valor de temperatura a ser mapeada a 4mA
	en el bucle de salida de corriente, si se selecciona la temperatura de cabezal para
	controlar el bucle de corriente.
High Range	Muestra, y permite al usuario establecer, el valor de temperatura a ser mapeada a
	20mA en el bucle de salida de corriente, si se selecciona la temperatura de cabezal
	para controlar el bucle de corriente.

Unidades de temperatura son uno de los siguientes:

Elemento	Significado
degC	grados Celsius
degF	grados Fahrenheit
degR	grados Rankine
Kelvin	grados Kelvin

Menú Alarms (Alarmas)

El menú Alarms es usado para configurar los parámetros asociados con las alarmas analógicas.

ELEMENTO	FUNCIÓN
Source	Muestra, y permite al usuario establecerla fuente
Alarm Type	Muestra, y permite al usuario establecer el tipo de alarma
Setpoint	Muestra, y permite al usuario establecer el punto de ajuste para la alarm
Setpoint2	Muestra, y permite al usuario establecer el segundo punto de ajuste para la alarma ³
Hysterisis	Muestra, y permite al usuario establecer el porcentaje de histéresis de la alarma

Source (Fuente) es uno de lo siguiente:

Fuente	SIGNIFICADO
Level	Usa el Nivel para la fuente de la alarma
Head Temp	Usa la Temperatura de Cabezal del detector para la fuente de la alarma
Filtered Counts	Usa las Cuentas Filtradas del detector para la fuente de la alarma

Alarm Type (Tipo de Alarma) es uno de lo siguiente:

Tipo de Alarma	SIGNIFICADO
None	La alarma no ha sido establecida aun
Low	Alarmar cuando la fuente es igual a o menor que el Setpoint
High	Alarmar cuando la fuente es igual a o mayor que el Setpoint
Range	Alarmar cuando la fuente es igual a o menor que el Setpoint <u>o</u> la fuente es igual a
	o mayor que el Setpoint2

³ El segundo punto de ajuste de alarma solamente se usa cuando el el tipo de alarma es rango.

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

⁸⁰⁵⁰ Production Drive • Florence, KY 41042

Menú Hardware (Equipo)

El menú Hardware es usado para definir los tipos de equipos usados para proveer las mediciones y radiación. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
System Hardware	Muestra al usuario una lista de módulos de equipo en el sistema y el estado de estos
	módulos
Source Type	Al seleccionar este elemento lleva al usuario al menú Source Type
Analog Out Cnfg	Muestra y permite al usuario establecer si la fuente de alimentación es interna o
	externa

Menú System Hardware (Sistema de Equipo)

El menú System Hardware le muestra al usuario una lista de módulos de equipo en el sistema y el estado de estos módulos:

ELEMENTO	FUNCIÓN
CPU Card	Muestra el tipo de tarjeta CPU instalada (en la ranura 1)
CPU Status	Estado de la tarjeta CPU
DIO Card	Muestra el tipo de tarjeta DIO (Entrada/Salida Digital) instalada (en la ranura 2)
DIO Status	Estado de la tarjeta DIO
Slot 3 Card	Muestra el tipo de tarjeta (si es que hubiese) instalada en la ranura 3
Slot 3 Status	Si hay una tarjeta instalada en la ranura 3, muestra el estado de la tarjeta, de lo contrario
	muestra None
Slot 4 Card	Muestra el tipo de tarjeta (si es que hubiese) instalada en la ranura 4
Slot 4 Status	Si hay una tarjeta instalada en la ranura 4, muestra el estado de la tarjeta, de lo contrario
	muestra None
Slot 5 Card	Muestra el tipo de tarjeta (si es que hubiese) instalada en la ranura 5
Slot 5 Status	Si hay una tarjeta instalada en la ranura 5, muestra el estado de la tarjeta, de lo contrario
	muestra None
Slot 6 Card	Muestra el tipo de tarjeta (si es que hubiese) instalada en la ranura 6
Slot 6 Status	Si hay una tarjeta instalada en la ranura 6, muestra el estado de la tarjeta, de lo contrario
	muestra None
Slot 7 Card	Muestra el tipo de tarjeta (si es que hubiese) instalada en la ranura 7
Slot 7 Status	Si hay una tarjeta instalada en la ranura 7, muestra el estado de la tarjeta, de lo contrario
	muestra None
Slot 8 Card	Muestra el tipo de tarjeta (si es que hubiese) instalada en la ranura 8
Slot 8 Status	Si hay una tarjeta instalada en la ranura 8, muestra el estado de la tarjeta, de lo contrario
	muestra None
Display Type	Muestra el tipo de módulo de visualización (si hubiese) conectado
Display Status	Muestra el estado del módulo de visualización, si es que el módulo está conectado, de
	lo contrario muestra None
HART	Muestra el tipo de interface HART (si hubiese) presente
HART Status	Muestra el estado de la interface HART, si es que la interface está presente, de lo
	contrario muestra None

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Source Type (Tipo de Fuente)

El menú Source Type es usado para definir el tipo de fuente radiactiva usada. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Source Type	Muestra, y permite al usuario establecer, el tipo de fuente
Usr Def Source	Al seleccionar este elemento, lleva al usuario al menú Usr Def Source
Analog Out Cnfg	Muestra, y permite al usuario establecer si la fuente de poder es interna o externa

Source Type (Tipo de Fuente) es uno de lo siguiente:

Tipo de Fuente	SIGNIFICADO
Unknown	Tipo de fuente desconocida
co_60	Cobalto 60
cs_137	Cesio 137
am_241	Americio 241
Usr Def	Cualquier otro tipo de fuente que no esté en la lista de arriba O una fuente del tipo
	nominal listado arriba con una vida media diferente.

Menú Usr Def Source (Definido por Usuario)

El menú Usr Def Source es usado para definir el tipo de fuente radiactiva a usarse. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Name	Muestra, y permite al usuario establecer, el nombre del tipo de fuente
Half Life	Muestra, y permite al usuario establecer, la vida media de la fuente

Menú HART

El menú HART es usado para proveer información sobre la interface HART. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Tag Name	Muestra, y permite al usuario establecer, el nombre de la etiqueta del dispositivo
MultiDrop	Muestra, y permite al usuario establecer, la dirección multi-caída para un dispositivo
	(ó 0 si el dispositivo no es usado en un bucle multi-caída)
Univ Rev	Muestra la revisión del comando universal HART al cual el dispositivo es conforme
Spec Rev	Muestra la revisión de la especificación HART al cual el dispositivo es conforme

Menú System (Sistema)

El menú System es usado para proveer información sobre el X96S. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Serial #	Shows the device serial number
Hardware Rev	Shows the device hardware revision
Software Rev	Shows the device software revision
Date	Muestra, y permite al usuario establecer, la fecha
Hour (0-23)	Muestra, y permite al usuario establecer, la hora
Minute	Muestra, y permite al usuario establecer, los minutos
Date/Time Format	Muestra, y permite al usuario establecer, el formato fecha/tiempo usado en la
	visualización de estado

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Date/Time Format es uno de lo siguiente:

Date/Time Format	SIGNIFICADO
mm/dd/yy hh:mm:ss	Fecha y formato de tiempo 24 horas Norte Americana
mm/dd/yyyy hh:mm:ss	Fecha formato Y2K y tiempo formato 24 horas Norte Americana
mm/dd/yy hh:mm:ss am/pm	Fecha y formato de tiempo 12 horas Norte Americana con indicación am/pm
dd-mm-yy hh:mm:ss	Fecha y formato de tiempo 24 horas europea
dd-mm-yyyy hh:mm:ss	Fecha formato Y2K y formato de tiempo 24 horas europea Y2K
dd/mm/yy hh:mm:ss	Fecha y tiempo formato 24 horas europea
dd/mm/yyyy hh:mm:ss	Fecha formato Y2K y formato de tiempo 24 horas europea Y2K

Menú Digital Outputs (Salidas Digitales)

Este menú es usado para ver y configurar las salidas digitales. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Relay 1	Al seleccionar este elemento lleva al usuario al menú Relay 1
Relay 2	Al seleccionar este elemento lleva al usuario al menú Relay 2
Relay 3	Al seleccionar este elemento lleva al usuario al menú Relay 3
Relay 4	Al seleccionar este elemento lleva al usuario al menú Relay 4
TTL 1	Al seleccionar este elemento lleva al usuario al menú TTL 1
TTL 2	Al seleccionar este elemento lleva al usuario al menú TTL 2
TTL 3	Al seleccionar este elemento lleva al usuario al menú TTL 3
TTL 4	Al seleccionar este elemento lleva al usuario al menú TTL 4

Menús Relay (Relé)

Los Menús Relay (Relay 1 al Relay 4) son usados para configurar las salidas de relé del X96S. Estos cuatro menus de relé muestran las configuraciones correspondientes a las salidas de relé y permite cambiar las características de la salida. Cada menú contiene uno de los siguientes elementos:

ELEMENTO	FUNCIÓN
Source	Muestra, y permite al usuario establecer, la fuente
Alarm Type	Muestra, y permite al usuario establecer, el tipo de alarma
Setpoint	Muestra, y permite al usuario establecer, el punto de ajuste de la alarma
Setpoint2	Muestra, y permite al usuario establecer, el segundo punto de ajuste de la alarma ⁴
Hysteresis	Muestra, y permite al usuario establecer, el porcentaje de histéresis de la alarma
Polarity	Muestra, y permite al usuario establecer, la polaridad de la alarma

Alarm Source (Fuente de Alarma) es uno de lo siguiente:

Fuente de Alarma	SIGNIFICADO
Level	Activar relé cuando el Nivel está en alarma tal como se define en el Tipo de Alarma y
	los puntos de ajuste.
HeadTemp	Activar relé cuando la Temperatura del Cabezal está en alarma tal como se define en el
	Tipo de Alarma y los puntos de ajuste.
System Alarm	Activar relé cuando el X96S detecta un problema.
Detector Flt	Activar relé cuando hay un problema con el detector.
Rad Disc	Activar relé cuando la función Rad. Disc. se gatille.
Auto Cal Ref	Activar relé cuando el X96S esté realizando una calibración automática.
Auto Cal Err	Activar relé si el X96S detecta un error mientras se realiza una calibración automática.
Not Used	El relé no está en uso actualmente.

⁴ El segundo punto de ajuste de alarma solamente se usa cuando el tipo de alarma es rango.

Alarm Type (Tipo de Alarma) es uno de lo siguiente:

Tipo de Alarma	SIGNIFICADO
None	La alarma no ha sido establecida aun
Low	Alarmar cuando la fuente es igual a o menor que el Setpoint
High	Alarmar cuando la fuente es igual a o mayor que el Setpoint
Range	Alarmar cuando la fuente es igual a o menor que el Setpoint <u>o</u> la fuente es igual a
	o mayor que el Setpoint2

Polarity (Polaridad) es uno de lo siguiente:

Polaridad	SIGNIFICADO
NO	Normalmente abierto
NC	Normalmente cerrado

Menús TTL

Los menús TTL (TTL 1 al TTL 4) son usados para configurar las salidas TTL del X96S. Estos cuatro menús TTL muestran las configuraciones de la salida TTL correspondiente y permite cambiar las características de la salida. Cada menú contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Source	Muestra, y permite al usuario establecer, la fuente
Alarm Type	Muestra, y permite al usuario establecer, el tipo de alarma
Setpoint	Muestra, y permite al usuario establecer, el punto de ajuste de alarma
Setpoint2	Muestra, y permite al usuario establecer, el segundo punto de ajuste de alarma ⁵
Hysteresis	Muestra, y permite al usuario establecer, el porcentaje de histéresis de la alarma
Polarity	Muestra, y permite al usuario establecer, la polaridad de la alarma

Alarm Source es uno de lo siguiente:

Fuente de Alarma	SIGNIFICADO
Level	Operar esta salida TTL cuando Nivel esté en alarma como está definido por el Tipo de
	Alarma y puntos de ajuste
HeadTemp	Operar esta salida TTL cuando Temperatura de Cabezal esté en alarma como está
	definido por el Tipo de Alarma y puntos de ajuste
System Alarm	Operar esta salida TTL cuando el X96S detecte un problema
Detector Flt	Operar esta salida TTL cuando hay un problema con el detector
Rad Disc	Operar esta salida TTL cuando la función Rad Disc se dispare
Auto Cal Ref	Operar esta salida TTL cuando el X96S esté realizando una calibración automática
Auto Cal Err	Operar esta salida TTL si el X96S detecta un error al realizar una calibración
	automática
Not Used	Esta salida TTL no está en uso actualmente.

⁵ El segundo punto de ajuste de alarma solamente se usa cuando el tipo de alarma es rango.

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Tipo de Alarma	SIGNIFICADO
None	La alarma no ha sido establecida aun
Low	Alarmar cuando la fuente es igual a o menor que el Setpoint
High	Alarmar cuando la fuente es igual a o mayor que el Setpoint
Range	Alarmar cuando la fuente es igual a o menor que el Setpoint <u>o</u> la fuente es igual a
	o mayor que el Setpoint2

Polarity es uno de lo siguiente:

Polaridad	SIGNIFICADO
Not Driven	Normalmente no accionado
Driven	Normalmente accionado

Menú Digital Inputs (Entradas Digitales)

Este menú es usado para ver y configurar las entradas digitales. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Input 1	Al seleccionar este elemento lleva al usuario al menú Input 1
Input 2	Al seleccionar este elemento lleva al usuario al menú Input 2
Input 3	Al seleccionar este elemento lleva al usuario al menú Input 3
Input 4	Al seleccionar este elemento lleva al usuario al menú Input 4
Input 5	Al seleccionar este elemento lleva al usuario al menú Input 5
Input 6	Al seleccionar este elemento lleva al usuario al menú Input 6
Input 7	Al seleccionar este elemento lleva al usuario al menú Input 7
Input 8	Al seleccionar este elemento lleva al usuario al menú Input 8

Menú Input (Entrada)

El menú de cada entrada (Input 1 al Input 8) contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Polarity	Muestra, y permite al usuario establecer, el estado activo de la entrada digital
Туре	Muestra, y permite al usuario establecer, el tipo de dispositivo conectado a la entrada digital

Polarity (Polaridad) es uno de lo siguiente:

Polaridad	SIGNIFICADO
Low	Un "verdadero" es representado por una señal baja en la entrada digital
High	Un "verdadero" es representado por una señal alta en la entrada digital

Type es uno de lo siguiente:

Tipo	SIGNIFICADO
Manual	Interruptor de botón presionable
Sensor Rise	Sensor/relé, solamente se usa nivel en ascenso
Sensor Fall	Sensor/relé, solamente se usa nivel en descenso
Sensor Both	Sensor/relé, se usan ambos niveles en ascenso y descenso

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Calibration (Calibración)

Este menú es usado para ver y controlar la calibración del Medidor de Nivel X96S. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
State	Muestra el estado del nivel de configuración de proceso
Ref Constants	Al seleccionar este elemento lleva al usuario al menú Ref Constants
Calibrate	Al seleccionar este elemento lleva al usuario al menú Calibrate
Ref Date	Muestra la fecha cuando el instrumento fue recientemente llevado a Referencia Baja.
Loop Config	Al seleccionar este elemento lleva al usuario al menú Loop Config
Aux Loop Cfg	Al seleccionar este elemento lleva al usuario al menú Aux Loop Cfg

State es uno de lo siguiente:

Estado	SIGNIFICADO
Uncalibrated	Necesita referencia y calibración
Referenced	Necesita calibración
Partial Cal	Necesita referencia
Need Ref Level	Se debe introducir Nivel de Referencia
Need Cal Level	Se debe introducir Nivel de Calibración
Fully Calibrated	Calibración completada
Invalid Data	Datos de referencia y calibración son inconsistentes

Menú Ref Constants (Constantes de Referencia)

Este menú es usado para ver y controlar las constantes de referencia usadas en los procedimientos de referencia y calibración. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Ref Mode	Muestra, y permite al usuario establecer, el modo de referencia/calibración
Ref Time	Muestra, y permite al usuario establecer, el número de segundos de datos a reunir para una muestra de referencia o calibración
MinRefCnts	Muestra, y permite al usuario establecer, el valor mínimo sin procesar a usar para una muestra de referencia y calibración

Ref Mode (Modo de Referencia) es uno de lo siguiente:

Modo de Ref	SIGNIFICADO
Empty/Full	Estanque estará Vacío (aire) para referencia y Lleno (lleno con proceso) para la calibración en el área de medición.
Process	Material de proceso área de medición (no necesariamente vacío y lleno para referencia y calibración). El usuario suministrará niveles actuales durante la referencia y calibración.
Absorber	Absorbedor colocado en la trayectoria de la radiación.

Menú Calibrate (Calibrar)

Este menú es usado para accesar varios procedimientos de calibración. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Low Reference	Al seleccionar este elemento lleva al usuario al menú Low Reference
High Calibrate	Al seleccionar este elemento lleva al usuario al menú High Calibrate
Clear Ref/Cal	Este elemento invoca un método que limpia el nivel de referencia

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Menú Low Reference (Referencia Baja)

Este menú es usado para realizar el procedimiento de referencia baja. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Reference	Este elemento invoca un método que realiza un procedimiento de referencia baja
Ref Level	Muestra, y permite al usuario establecer, el valor de nivel de referencia
Ref Cap	Muestra las cuentas de referencia sin procesar capturadas

Menú High Calibrate (Calibrar Rango Alto)

Este menú es usado para realizar el procedimiento de calibrar rango alto. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Calibrate	Este elemento invoca un método que realiza un procedimiento de calibrar rango alto
Cal Level	Muestra, y permite al usuario establecer, el valor de nivel a calibrar
Cal Cap	Muestra las cuentas de referencia sin procesar capturadas

Menú Loop Config (Configuración de Bucle)

Este menú es usado para accesar los procedimientos de calibración del bucle 4-20mA primario. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
Loop test	Este elemento invoca un método que realiza una prueba en el bucle de corriente de
	420mA primario
Damping	Muestra, y permite al usuario establecer, la constante de amortiguación para el bucle
	de corriente de 4-20mA primario
D/A trim	Este elemento invoca un método que realiza los ajustes D/A del bucle de corriente de
	4-20mA primario

Menú Aux Loop Cfg (Configuración de Bucle Auxiliar)

Este menú es usado para accesar los procedimientos de calibración para el bucle 4-20ma secundario. Contiene los siguientes elementos:

ELEMENTO	FUNCIÓN
SV is	Muestra, y permite al usuario establecer, la variable asignada a la corriente de bucle secundario 4-20mA
Loop test	Este elemento invoca un método que realiza una prueba en el bucle de corriente secundario de 4-20mA
Damping	Muestra, y permite al usuario establecer, la constante de amortiguación para el bucle de corriente secundario de 4-20mA
D/A trim	Este elemento invoca un método que realiza los ajustes D/A del bucle de corriente secundario de 4-20mA

SV is es uno de lo siguiente:

SV is	SIGNIFICADO
Level	Nivel
SV is	SIGNIFICADO
Head Temp	Temperatura de Cabezal (si estuviese disponible)
Not Assigned	Línea en blanco

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Visualizador Local del X96S

X96S

El Visualizador Local del X96S consta de un visualizador de 16 líneas por 21 caracteres y un teclado de 10 teclas. La línea superior del visualizador está reservada para la barra analógica, si estuviese habilitada. La siguiente línea es usada por el logo Ronan. La línea #3 muestra el modelo del dispositivo. La línea #4 visualiza el título específico en pantalla. Ese título es generalmente una descripción de la pantalla o acción requerida. El resto de las líneas, con la excepción de la última línea, son dependientes de la pantalla o acción. La última línea visualiza la etiqueta de la tecla funcional activa.

Directamente bajo el visualizador hay un teclado. Este teclado está dividido en dos partes:

Una sección de 4 teclas funcionales y

• Una sección de 6 teclas (2 filas de 3 teclas) para controlar el cursor

Menús de Navegación

El menú y la pantalla de visualización hay una o más líneas, cada una consiste de una etiqueta de línea (nombre de la entrada) y valor opcional y unidades. En el mayor de los casos, el menú de navegación es sigue exactamente la interface de usuario del Configurador Rosemount 475.

La primera columna está reservada para las teclas de dirección si el número de líneas no encaja en el visualizador físico. La segunda columna mostrará un carácter con forma de flecha a la derecha cuando el cursor esté en esta línea y un sub-menú u otra pantalla o acción asignada a esta línea. Si el menú no está en el nivel superior, el final de la línea del título del menú mostrará una flecha hacia la izquierda para indicarlo, y para recordar que el usuario puede "ir hacia atrás" al menú anterior presionando la flecha hacia la izquierda.

Si la longitud de la línea es más larga que la pantalla física, una flecha a la derecha se mostrará, y si la tecla con la flecha hacia la derecha es presionada, el valor se visualizará en pantalla, similar a la de edición, pero con la función de edición deshabilitada.

Dependiendo del tipo de función asignada a la línea una pantalla diferente se mostrará cuando el usuario presione la tecla hacia la derecha.

Si esta línea es un sub-menú, se abrirá otro menú.

Editando Valores

La edición de diferentes tipos de valores está diseñada en torno al uso de las cuatro teclas direccionales y hasta cuatro teclas funcionales. Las teclas con flechas en dirección izquierda y derecha son usadas para posicionar el cursor en la letra o dígito a ser editado, y las teclas con flechas en dirección arriba y abajo son usadas para moverse entra los valores posibles para esta posición.

En todas las funciones de edición, el valor editado es visualizado debajo del valor actual.

Editando Números de Punto Fijo

Usando las teclas con flechas en dirección izquierda y derecha, mover el cursor a la posición deseada y cambiar el dígito en esta posición usando las teclas con flechas en dirección arriba y abajo. Cuando el valor cambie hacia arriba o abajo ocurre un cambio en los dígitos anterior/posterior. Cuando se esté listo, presionar F4. Para cancelar los cambios y abortar, presionar F3.

Editando Números de Punto Flotante

Usando las teclas con flechas en dirección izquierda y derecha, mover el cursor a la posición deseada y cambiar el dígito en esta posición usando las teclas con flechas en dirección arriba y abajo. Cuando el valor cambie hacia arriba o abajo ocurre un cambio en los dígitos anterior/posterior. Cuando se esté listo, presionar F4. Para cancelar los cambios y abortar, presionar F3.

La diferencia con la edición de punto fijo es que el punto decimal es saltado automáticamente cuando se mueve el cursor hacia la izquierda o derecha.

Editando Cadenas de Texto

Usando las teclas con flechas en dirección izquierda y derecha, mover el cursor a la posición deseada y cambiar el carácter en esta posición usando las teclas con flechas en dirección arriba y abajo. Los caracteres son rotados entre blanco y 'z'. Cuando se esté listo, presionar F4. Para cancelar los cambios y abortar, presionar F3. Cuando la cadena de valores es una contraseña, siempre empieza con * para cada carácter para evitar que se vea la contraseña.

Editando Valores Enumerados

Los valores enumerados son visualizados como elementos del menú abajo del valor actual. Las teclas con flechas en dirección arriba y abajo son usadas para seleccionar la opción deseada, y el F4 es usado para confirmar. El F3 es usado para abortar la edición y salir sin cambiar el valor.

Visualizador Local del X96 Vs Calibrador 475

La interfaz de usuario (visualizador local) es muy similar al Calibrador 475, pero hay algunas diferencias. Una de las más grandes es el hecho que el visualizador local carece de un teclado numérico. Esto automáticamente quiere decir que los accesos directos no son soportados, como también la edición de valores se hace solamente usando las teclas cursoras.

Otra diferencia es el hecho de que todos los valores en el visualizador local se actualizan inmediatamente, y no hay necesidad de usar la acción SEND (enviar) cuando quiera que se cambie un valor. También, el carácter en forma de 'corazón' parpadeante indicando que el configurador está intercambiando información a través de la comunicación HART no es necesario y por lo tanto no está presente en el visualizador local.

Cuando hay un valor a visualizar y el largo de la línea no cabe dentro del visualizador, el Configurador 475 solamente visualiza la etiqueta y permite que el usuario vea el valor usando la tecla con flecha en dirección derecha. El visualizador local X96 visualizará cualquier cosa que quepa en el visualizador, así indicando al usuario que no hay nada más que visualizar y la señal en forma de flecha derecha no está indicando un nuevo menú.

Instalación

Precaución

Licencia Específica

Los Sistemas de Monitoreo Ronan usan una fuente radiactiva sellada de Cesio (Cs-137) que es segura si se manipula apropiadamente.

La mayoría de los Monitores de Nivel son montados en estanques grandes. Las instalaciones en estanques donde se permita el acceso al personal requieren una licencia específica. La licencia específica de su empresa nombrará un Oficial de Seguridad en Radiación (RSO, en inglés) u Oficial de Protección en Radiación (RPO, en inglés). El RSO de su compañía debe ser inmediatamente notificado cuando se recepciones el medidor. NO proceder con el desempaque, almacenamiento, o instalación sin la autorización del RSO.

Licencia General

Otros sistemas de monitoreo, tal como Monitores de Nivel, son montados en tuberías de proceso de pequeño diámetro. Estas aplicaciones no requieren de una persona con licencia específica para desempacar o montar el equipo, mientras que el contenedor de fuente se mantenga asegurado con candado en la posición OFF. Solamente una persona con licencia específica está permitida para sacar el candado y encender la fuente el pa posición ON.

El personal de servicio de campo de Ronan está disponible para asesoramiento o asistencia. (859) 342-8500.

Desempaque

Todo equipo fabricado por Ronan es cuidadosamente empacado para prevenir daños en el envío. Desempacar el equipo en un área limpia y seca. Examinar los contenidos y compararlos con la lista de empaque. Inmediatamente reportar cualquier discrepancia o daños a Ronan, el RSO de la empresa, y el transportador. Emitir un reclamo al transportador.

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

8050 Production Drive • Florence, KY 41042

Almacenamiento

De ser necesario almacenar el equipo antes del montaje, el RSO asignará un lugar seguro que no tenga acceso al personal.

Durante el almacenamiento evitar temperaturas bajo cero,

y áreas con humedad extrema o polvo.

Inspección

El contenedor de fuente está equipado con un mecanismo ON/OFF. Durante el envío y el almacenamiento el mecanismo DEBE ESTAR ASEGURADO en la posición OFF con un candado.

Si el candado estuviese dañado, roto, o extraviado, contactar inmediatamente al RSO.

Manilla con Candado en Posición OFF

Etiqueta de Cierre

----- ADVERTENCIA ------

ESTE DISPOSITIVO PUEDE SER MONTADO EN SU LUGAR INICIALMENTE POR UNA PERSONA SIEMPRE Y CUANDO EL MECANISMO OBTURADOR PERMANEZCA EN LA POSICIÓN APAGADO (OFF). SOLAMENTE UNA PERSONA CON LA LICENCIA ESPECÍFICA PUEDE PONER EN SERVICIO EL DISPOSITIVO ABRIENDO INICIALMENTE EL OBTURADOR Y HACIENDO LA PRUEBA DE FUGA INICIAL REQUERIDA, PROBANDO LA OPERACIÓN CORRECTA DEL MECANISMO ON-OFF E INDICADOR Y HACIENDO UNA INSPECCIÓN DE RADIACIÓN.

Precauciones de Seguridad

Durante la instalación el RSO será el encargado de proveer pautas para asegurar la seguridad. Considerar la información presentada en el Capítulo de Regulaciones/Seguridad en este manual, como también las siguientes indicaciones generales:

El contenedor de fuente debe mantenerse con candado en al posición OFF hasta que se termine la instalación.

Tomar todas las precauciones necesarias para asegurar que el contenedor de fuente no se deje caer o se dañe.

Una persona con licencia específica DEBE inspeccionar la instalación antes de colocar el contenedor de fuente en la posición ON.

Siempre hay que colocar el contenedor de fuente en la posición OFF cuando se estén realizando trabajos alrededor de ella, el detector, o el área entre estos dos componentes al cual se refiere como "espacio de medición".

Cuando el contenedor de fuente es colocado en la posición ON, evitar el "haz activo".

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Montaje Mecánico

Revisar el Diseño de Configuración que está incluido en el Capítulo de Diseños de este manual.

Por favor, hacer referencia a los diseños dimensionales localizados en el Capítulo de Diseños de este manual cuando se instale el equipo.

Considerar las siguientes indicaciones generales cuando se monte el sensor y el detector:

Evitar las obstrucciones internas del estanque tal como deflectores, agitadores, conductos, tubos calefactores / enfriadores, etc. que puedan interferir con la transmisión a través del estanque del "haz activo" de radiación.

La fuente y el detector deben ser montados rígidamente para que no puedan moverse uno respecto del otro. Tal movimiento invalidará la calibración del sistema y/o su medición.

Se deberá usar aislación en este punto de la instalación SI:

- La temperatura del estanque en el punto excede 131° F (55°C), o

- el voltaje de transmisión a través del estanque pueda interferir con la señal de transmisión desde la fuente al detector.

Instalación Eléctrica del Cableado Interconectado

Diseños:

Interconexión

CÓDIGO LOCAL CÓDIGO NACIONAL

ENTRADA DE ALIMENTACIÓN

NO CONECTAR LA FUENTE hasta que el cableado se haya revisado con cuidado.

Cablear el equipo de acuerdo con el diseño que detalla la interconexión incluido en el Capítulo de Diseños de este manual.

Seguir los códigos eléctricos locales y nacionales para todas las interconexiones.

Considerar las siguientes indicaciones antes de realizar cualquier conexión eléctrica:

Usar corridas de conductos continuos y proteger las cajas protectoras de uniones de gotas o condensado de humedad de los conductos.

Cerrar los agujeros de conductos no utilizados para prevenir la entrada de polvo y humedad.

Pasar el cable de interconexión por un conducto separado. Pasar el cable a través del conducto empezando del lado del detector y terminando del lado del microprocesador.

NO PASAR el cable de alimentación AC en el mismo conducto que contiene los cables de bajo nivel (señal, mV, mA, etc.).

Mantener las fuentes de alimentación AC libre de transientes entre 105 y 130 VAC para el microprocesador. NO usar una línea que esté conectada a un motor grande, equipos de soldar, solenoides, etc.

CON LA ALIMENTACIÓN APGADA (OFF) - - -Conectar cable, conector MS al detector.

Inmediatamente reemplazar la tapa de la carcasa del detector para mantenerlo libre de agua y polvo.

Revisar las conexiones en los terminales del chasis del microprocesador. Verificar que todos los cables están totalmente insertados en los enchufes y que los tornillos estén firmemente apretados.

Verificación del Microprocesador

Rotar el seguro en sentido horario para abrir la puerta de la carcasa. Luego, para sacar la cobertura frontal del computador se deslizan dos lengüetas de color negro hacia abajo. Revisar cada tarjeta para ver si están completamente puestas en la tarjeta madre. Identificar el CPU y otras tarjetas importantes que aparecen en el diseño de más abajo.

Es posible realizar configuraciones opcionales

NOTA: Estas tarjetas no son intercambiables entre ranuras del armazón.

Identificación / Documentación

El Microprocesador Ronan X96S puede ser programado para una variedad de aplicaciones y configuraciones. La aplicación específica suministrada con cada sistema está determinada por la combinación de un programa y una configuración única del equipo usada para dar deporte al programa.

Encendido

X96S

Antes de conectar, asegurarse de que todas las tarjetas estén bien colocadas en las ranuras del armazón. Cerrar la puerta frontal del X96S y asegurar la puerta...

Cuando se alimenta el X96S ejecuta un programa de autodiagnóstico.

La primera visualización aparece por solo un segundo.

Para ajustar el contraste de la Pantalla LCD:

Presionar el botón "C" para ajustar el contraste en la pantalla LCD. Usted puede hacer ajustes al presionar las flechas en dirección hacia arriba o hacia abajo.

Al terminar, presionar el botón "C" un segundo para establecer y completar el procedimiento.

Después, aparece la pantalla principal como se muestra en la figura. Desde esta pantalla usted puede navegar por la configuración del sistema. Para ver la pantalla de estados, usted puede presionar la Tecla Caliente >>> en el teclado.

Contraseña

Nota:

Para accedar al Menú de Programación, la Contraseña es 101010.

Paso 1: Encienda el equipo – Debería estar ahora en la Pantalla de Estado.

Paso 2: Presionar F3 para retroceder.

Paso 3: Ahora introduzca la contraseña. (Todos los dígitos están en 000000 en este punto.)

Presionar	$\hat{1}$	para hacer que el dígito sea # uno
Presionar		2 veces (El tercer dígito debe estar destacado.)
Presionar	$\hat{\mathbf{U}}$	para hacer que el dígito sea # uno
Presionar	$\Box \rangle$	2 veces (El quinto dígito debe estar destacado.)
Presionar	$\hat{\mathbf{U}}$	para hacer que el dígito sea # uno
Presionar F4	(entre)	

Nota: Si se introdujo la contraseña incorrecta, presionar **F1** (**ALL0**) para poner todos los dígitos al número 0 y usted puede empezar a reingresar la contraseña desde el principio. Al presionar **F2** (**RST0**) pondrá el dígito individual que está destacado de vuelta al número 0.

Nota: Por razones de seguridad, cada dígito siempre se mostrará como un asterisco.

Calibración

La calibración correlaciona la salida del X96S a su nivel de proceso actual. Le da instrucciones al microprocesador de leer y guardar las cuentas del detector para un nivel bajo y alto del proceso. Una vez que el sistema es condicionado para reconocer los niveles ñajos y altos, podrá proveer una salida de 4-20 mA en todo el rango de interés.

Modos de Referencia

Una de sus primeras tareas será calibrar el sistema. El primer paso en el procedimiento de calibración es "referenciar" el instrumento en un nivel conocido. Los pasos involucrados en el procedimiento de referencia variarán ligeramente dependiendo del *modo* seleccionado como constante.

Uno de estos tres MODOS DE REFERENCIA estará activo en su sistema:

- Referencia EMPTY (VACÍO, Nivel = 0)
- Referencia con PROCESS (PROCESO) a un nivel conocido
- Referencia con ABSORBER (ABSORBEDOR)

Calibración Referencia de Nivel Bajo

Dependiendo del Modo de Referencia seleccionado, usted debe establecer el trayecto de la radiación en el estanque a la condición de Referencia (estanque está VACIÍO, PROCESO está a un nivel conocido, o el ABSORBEDOR apropiado está en posición). Si se seleccionar ABSORBEDOR o PROCESO, va a necesitar suministrar el nivel actual representado. Si usted selecciona VACÍO, el sistema automáticamente suministrará un valor al nivel igual a 0 por usted.

Calibration de Nivel Alto

Otra vez, dependiendo del Modo de Referencia seleccionado, usted debe establecer el trayecto de la radiación en el estanque a la condición de Calibración. También necesitará suministrar el nivel actual que se esté estableciendo.

Preparativos para la Calibración

Paso 1 Empezar en la Pantalla de Estado

Desde la Pantalla de Estados, presionar la tecla F3 Key para que aparezca la pantalla de contrasena (or los Menus Principales si la contrasena estuvies deshabilitada).

Paso 2 Menu Contraseña

Con el carácter de más a la izquierda * destacado (Todos los dígitos se inician en 000000 en este punto), ingresar la contraseña 101010'.

Presionar la Tecla \uparrow 1 vez para que el carácter de más a la izquierda igual a 1. Presionar la Tecla \rightarrow 2 veces para moverse al tercer carácter.

Presionar la Tecla \uparrow 1 vez para que el tercer carácter sea igual a 1.

Presionar la Tecla $\rightarrow 2$ veces para moverse al quinto carácter.

Presionar la Tecla \uparrow 1 vez para que el quinto carácter sea igual a 1.

Presionar la Tecla F4 (enter) para aceptar la contraseña.

Nota: Si se ingresa la contraseña incorrecta, presionar F1 (All0) para reiniciar todos los caracteres de vuelta al valor 000000. Ahora usted puede volver a ingresar la contraseña desde el principio. Al presionar F2 (RST0), se reiniciará el carácter individual seleccionado de vuelta al valor 0.

Nota: Por razones de seguridad, cada carácter siempre se mostrará como un asterisco *.

Presionar la Tecla F3 (Home) para retornar al Menu Principal. Presionar la Tecla F3 (Lock) para retornar al visualización de estado.

F4

₽

 \triangleleft

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

Configuración

Ronan envía el Sistema de Monitoreo de Nivel con configuraciones de programa por defecto de fábrica. Estas configuraciones son responsables de la información que aparece inicialmente en el visualizador de estados.

Después de la instalación en su emplazamiento, usted puede necesitar reconfigurar el sistema para que calce con su aplicación. El objetivo es del X96S con las lecturas del nivel actual. La lista de más abajo resume las actividades que son detalladas en el recordatorio de este capítulo:

- Revisar las configuraciones por defecto de fábrica para asegurarse que son apropiadas para sus circunstancias. SI NO ES ASÍ, haga los cambios necesarios y documente estos cambios para consultas futuras.
- Realizar una calibración inicial para correlacionar la salida del X96S con la lectura del nivel actual.
- Documentar las cuentas en la salida del detector en valores calibrados para ayudar a resolver problemas en el futuro.
 También, registrar cambios que se hagan a la configuración por defecto de fábrica. Mantener esta información para consultas futuras.

Documentación

Para referencias futuras, documentar estos elementos:

(a) Condiciones ambientales/de proceso que influencien la referencia / calibración. La próxima vez que se realice una calibración, usted necesitará duplicar estas condiciones, o estar al tanto de las diferencias.

(b) Todos los cambios hechos a la configuración por defecto de fábrica tales como la constante de tiempo, constantes de referencia, ganancia, etc.

(c) La información del visualizador de estados. Un registro de las "cuentas" recibidas en el detector puede ayudar a resolver problemas a futuro.

Detector

Detector de Centelleo

Descripción	El detector de centelleo de Ronan consiste de 3 componentes principales: El cristal plástico de centelleo, el tubo fotomultiplicador (<i>Photomultiplier Tube</i> o PMT), y la electrónica asociada.
Cristal de Centelleo	El Cristal es usado para el Sistema de Nivel Continuo; es un plástico poli-vinil tolueno (PVT). El cristal produce pulsos de luz que son proporcionales a los eventos de radiación incidente que lo impactan.
	Típicamente montado en un caparazón de acero inoxidable, el ensamblaje de acero es sellado para evitar la entrada de humedad y polvo y no es reparable. Un flanja integral se usa para montar el cristal en el PMT. Una membrana especial de silicona sirve como un medio de acoplamiento óptico entre el cristal y el PMT.
Tubo Fotomultiplicado	r EL PMT es un tubo vacío sensible y ligero con una capa foto sensitiva que convierte los pulsos de luz en una corriente eléctrica. Los pulsos de luz del cristal impactan la capa foto sensitiva y liberan electrones. Una fuente de alimentación de alto voltaje conectada a la capa foto sensitiva acelera los electrones a través de etapas de amplificación de corriente.
	El PMT y sus componentes asociados están confinados en un escudo magnético especial. El tubo está montado con un revestimiento interno anti-vibraciones, con un plato de interface en la parte superior, que también soporta la electrónica y la carcasa externa.
Electrónica	Cuatro tarjetas, confinadas en una carcasa de acero inoxidable, componen la electrónica y sus funciones.
	Fuente de Alimentación de Alto Voltaje
	• Preamplificador
	• Discriminador
	Pulso de Salida

Servicio del Detector Los componentes críticos del circuito electrónico y el Ensamblaje PMT/Cristal son alineados antes de que se despachen de fábrica. Si cualquier componente del Detector de Centelleo es ajustado o reemplazado, el desempeño del sistema completo se verá adversamente afectado y requerirá un realineamiento antes de que se continúe usando, si es posible.

Por lo tanto, **NO ES posible realizar un servicio en terreno al detector de centelleo.** Si surge algún problema con el detector, se deberá devolver el Ensamblaje del Detector completo a Ronan para su reparación/reemplazo.

Cámara de IONES

Detector/Ensamblaje del Amplificador (DET-7471-XXX)	El detector cámara de iones de Ronan está lleno de un gas inerte a alta presión. Usa una polarización de bajo voltaje (15VDC) y genera una corriente de bajo nivel proporcional a la radiación gamma que incide en el detector. La corriente generada es del orden de 10 pA, por lo que se requiere un amplificador de electrómetro es requerido para converir la corriente de baja impedancia, señal de voltaje de alto nivel. La señal es medida por el Microprocesador X96S, que convierte la señal de voltaje a una señal de nivel (o densidad) de 4-20mA para un rango de medición específica.
Descripción del Circuito Referencia: B-6409-K B-9742-K	Referirse al diseño B-6409-K. La corriente (I), generada por la cámara de iones, es alimentada al terminal de entrada invertida del amplificador de electrómetro, (IC1). La salida del amplificador de electrómetro es filtrada por R2C4 (un filtro microfónico de paso bajo) y alimentado a un amplificador seguidor. La salida del IC2 es proporcionalmente retroalimentado al terminal invertido para proveer una ganancia de bucle cerrado basado en el valor de la ganancia del potenciómetro resistivo (R2) en la tarjeta de entrada del X96. (B9742-K).
	La ganancia del detector es ajustada cuando sea que la salida de la señal del detector es demasiado alta y pueda saturar la entrada del X96S, que es aproximadamente 3,5VDC. La salida debe ser menor que 3,0VDC con un estanque vacío.
	Un control de desplazamiento de cero (R6), usado para anular el desplazamiento de voltaje del amplificador de electrómetro, se ajusta en la fábrica y recubierto en Gyptal. R6 es ajustado para que la salida (TP1), sea cero con la Rf cortocircuitada (TP2 es común en el circuito).
	Los componentes más importantes del amplificador son el amplificador operacional (IC1), resistencia de retroalimentación (Rf), y el capacitor retroalimentador (Cf). Si estos componentes son sustituidos, el desempeño del sistema de ve adversamente afectado.
Servicio del Detector	El detector de cámara de iones contiene gas inerte presurizado. La cámara de iones en sí reparable y debe ser devuelto al servicio de fábrica. Seguir las instrucciones para "Remover/Reemplazar el Detector".
	Sin embargo, un técnico calificado puede resolver el problema y hacer el servicio al ensamblaje del amplificador del detector. También, se deben seguir las instrucciones para el procedimiento. Se necesitan algunas precauciones cuando se manipule el ensamblaje detector/amplificador.
,	Es importante mantener el interior del detector/amplificador seco. La humedad en las componentes de alta impedancia causará corrientes de fuga. Si la tapa del amplificador es abierta, es importante ver que se RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION
Phone: (859) 342-8500 •	8050 Production Drive • Florence, KY 41042 Fax: (859) 342-6426 • Website: www.ronan.com • E-mail: ronan@ronanmeasure.com

introduzca aire seco y tibio en el amplificador antes de reemplazar la junta de la tapa.

Extracción/Reemplazo del Detector

- 1) Revisar las notas de abajo para ilustraciones y precauciones que aplican a su equipo en específico.
- 2) Desatornillar la tapa de la carcasa del detector.
- 3) Desatornillar el conector sobre el detector.
- 4) Remover el detector de la carcasa.
- 5) Instalar con cuidado el detector a reemplazar en la carcasa.
- 6) Atornillar el connector al detector.
- 7) Inmediatamente volver a colocar la tapa de la carcasa del detector.
- 8) Seguir instrucciones para REFERENCIA o CALIBRAR un nuevo detector.

NOTAS DEL DETECTOR ALARGADO:

Para prevenir daños en el envío o instalación, los detectores alargados son empacados separados de la carcasa. Evitar exponer a los detectores a sacudidas mecánicas. Evitar sostener el detector por su manilla de cadena, u otros dispositivos de levantamiento, por tiempos prolongados.

Cuando el detector es colocado apropiadamente en el fondo de la carcasa, la "pestana" de la abrazadera de sujeción se enganchará y la extensión de la varilla atornillarle puede ser ajustada para apretar el ensamblaje del detector a la carcasa.

CARCASA DEL DETECTOR/ NOTAS DEL ENSAMBLAJE DEL SOPORTE:

Muchos detectores son enviados dentro del ensamblaje de la carcasa/soporte. Los pernos en la parte superior e inferior de la Abrazadera en forma de C son usados para ajustar en ensamblaje alrededor del tubo.

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

8050 Production Drive • Florence, KY 41042

Updated September 28, 2017

Sacando la Tarjeta de Circuitos Del Amplificador del Detector (CBAY-6102)

Reemplazando el Ensamblaje Tarjeta del Circuito/Conector del Detector

Referencia: B-6102-K Seguir este procedimiento para sacar la tarjeta de circuitos del amplificador de electrómetro:

- 1. Quitar la tapa del amplificador desatornillando los tornillos allen.
- 2. Quitar el conector MS de la tapa del amplificador.
- 3. Sacar los dos tornillos 6-32, que aseguran la tarjeta del amplificador al detector.
- 4. Desoldar los terminales eléctricos que van a los separadores de la tarjeta de circuitos usando un desoldador (60W).

PRECAUCIÓN: Si los terminales eléctricos se tuercen o doblan en exceso pueden dañarlos.

PRECAUCIÓN: NO sobrecalentar los terminals eléctricos. Si se usan alicates de cigüeña como absorbedor de calor evitará que se derrita la soldadurar por donde pasa la alimentación al detector.

5. Levantar el ensamblaje tarjeta/conector del interior de la carcasa del detector.

Si se está instalando una nueva tarjeta de amplificador de electrómetro, referirse al diseño B-6102-K para el cableado interno del conector y conexiones a los detectores.

Asegurarse que los terminales eléctricos del detector estén enderezados para despejar los orificios en la nueva tarjeta de circuitos.

Seguir este procedimiento. **PRECAUCIÓN:** Si los terminales eléctricos se tuercen o doblan en exceso pueden dañarlos.

- 1. Con mucho cuidado enderezar los terminales eléctricos del detector para despejar los orificios en la nueva tarjeta de circuitos.
- 2. Colocar el nuevo ensamblaje tarjeta de circuitos/conector en la carcasa del detector.
- 3. Usando dos tornillos 6-32 con una recubierta de glyptal, asegurar la tarjeta a la carcasa del detector.
- 4. Teniendo cuidado que los terminales eléctricos del detector no toquen la tarjeta de circuitos, soldar los terminales eléctricos del detector a los separadores.
- 5. Volver a colocar el conector MS en la tapa del amplificador.
- 6. Asegurarse que la empaquetadura en la tapa del amplificador esté en su lugar y sin daños.

7. Usando un ligero recubrimiento de glyptal en los tornillos allen, volver a colocar la tapa del amplificador.

 RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

 8050 Production Drive • Florence, KY 41042

 Phone: (859) 342-8500 • Fax: (859) 342-6426 • Website: www.ronan.com • E-mail: ronan@ronanmeasure.com

 Updated September 28, 2017
 45

Electrónica

X96-2001PL-SP X96-2001PL-SP es el módulo CPU

X96-2003-01PL

X96-2003-01PL es la entrada de la Cámara de Ionización

X96-2003-02PL

X96-2003-02PL es el ensamblaje PCB, entrada analógica, y 0-5 volt en ambos canales

X96-2003-03PL

X96-2003-03PL es el ensamblaje PCB, entrada analógica, y 0-20 mA en ambos canales

X96-2003-04PL

X96-2003-04PL es el ensamblaje PCB, entrada analógica, y transmisor de dos alambres

X96-2003-05PL

X96-2003-05PL es la entrada analógica, 0-15 volt en ambos canales

X96-2004PL

X96-2004PL es el Módulo de Salida Analógico de 2-Canales. Este módulo opcional tiene dos salidas analógicas aisladas donde cada una puede ser configurada independientemente como:

- bucle de corriente 4-20 mA
- una fuente de 0 a 10 volts
- un sumidero de 0 a 20 mA.

X96-2005PL

X96-2005PL es el Módulo HART Hija. Este módulo provee un bucle de corriente 4-20 mA y una interface HART esclava.

X96-2008PL

X96-2008PL es un Módulo Digital de Entrada/Salida. Un total de 16 bits de Entradas/Salidas Digitales y una alimentación humedecimiento/encoder es suministrada por el módulo.

8 entradas digitales aisladas de proveen. Estas entradas pueden ser configuradas para su uso como:

- monitoreo de contacto seco o vivo
- encoder4 de cuadrante
- contador de pulso

4 puntos de salida tipo relé (capacidad de 2 Amp) son suministrados. Salida en forma "C" salen del conector (tres conexiones por relé).

4 puntos de salida tipo colector abierto aislado son suministrados. Estas salidas son capaces de conmutar 4,5 a 30 Volts (suministrado externamente) a un máximo de 50 mA.

Se proveen 24 volts DC como un voltaje de humedecimiento cuando se necesite.

También, se provee una fuente de alimentación aislada de 15 volt DC capaz de proveer 200 mA. El uso principal de esta fuente de alimentación es alimentar un encoder de cuadrante, pero puede usarse para otros propósitos si no es requerida para este fin.

X96-2009PL1

X96-2009PL1 es el Módulo de Interface del Detector de Centelleo. Este módulo opcional⁶ provee:

⁶ Se requiere al menos un módulo de interface de detector.

- 1 entrada aislada de centelleo (contador de pulso, señal máx. 0-12⁷ V, umbral 0,6 V)
- 1 entrada de temperatura de cabezal (1 μ A por °K)
- 1 entrada RTD (3-wire) sin aislación
- Potencia aislada para la fuente⁸ de 24 V 40 mA del detector de centelleo.

X96-2029PL

X96-2029PL es el Módulo (tarjeta) de Nivel de Moldura para el detector de centelleo, con dos entradas digitales, dos salidas analógicas y dos salidas digitales (1 relé, 1 TTL).

X96C148-1

X96C148-1 es el módulo de fuente de alimentación de 85 a 230 Volt

X96C148-2

X96C148-2 es el módulo de fuente de alimentación de 24 Volt DC

X96C148-3

X96C148-3 es el módulo de fuente de alimentación de 85 a 230 Volt

X96C148-4

X96C148-4 es el módulo de fuente de alimentación de 12 Volt DC "entrada", 24 Volt DC "salida"

X96C429-1

X96C429-1 es el módulo del teclado de pantalla para el Computador X96S

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

⁷ 8,6 V nominal.

⁸ La fuente de alimentación tiene la habilidad de controlar la potencia al detector de centelleo:

cuando es comandada por el modulo de CPU,

cuando el procesador en el modulo detecta una condición que puede dañar al detector de ionización, cuando el temporizador de control genera un reinicio.

⁸⁰⁵⁰ Production Drive • Florence, KY 41042

Opciones X96S Números de Parte del Chasis Mecánico

NÚMERO DE PARTE	DESCRIPCIÓN
CHAS-0511-6	X96S-N4-1, Caja Protectora NEMA 4, 6 Posiciones, Sin pantalla LCD
CHAS-0512-9	X96S-N4-2, Caja Protectora NEMA 4, 6 Posiciones, Sin pantalla LCD
CHAS-0513-6-SS	X96S-N4X, Caja Protectora NEMA 4, 6 Posiciones, Sin pantalla LCD, Acero Inoxidable
CHAS-0514-9-SS	X96S-N4X, Caja Protectora NEMA 4, 9 Posiciones, Sin pantalla LCD, Acero Inoxidable
CHAS-0515-6-SSW	X96S-N4X, Caja Protectora NEMA 4, 6 Posiciones, Sin pantalla LCD, Con Ventana
CHAS-0515-9-SSW	X96S-N4X, Caja Protectora NEMA 4, 6 Posiciones, Sin pantalla LCD, Con Ventana
X96C429-1	Modulo del teclado de pantalla para el Computador X96S

X96S Números de Parte del Módulo Electrónico

NÚMERO DE PARTE	DESCRIPCIÓN
X96-2001PL-SP	X96S Modulo CPUE
X96-2003-01PL	X96S Entrada Cámara de Ionización
X96-2003-02PL	Ensamblaje PCB, Entrada Analógica, 0-5 Volts en ambos canales
X96-2003-03PL	Ensamblaje PCB, Entrada Analógica, 0-20mA en ambos canales
X96-2003-04PL	Ensamblaje PCB, Entrada Analógica, Transmisor de dos alambres
X96-2003-05PL	Ensamblaje PCB, Entrada Analógica, 0-15 Volts en ambos canales
X96-2004PL	X96S Modulo de 2-Canales de Salida Analógica de 4-20mA
X96-2005PL	X96S Modulo HART Hija
X96-2008PL	X96S Modulo de 8-Caneles de Entrada Digital, 8-Canales de Salida Digital (4
	Transistores y 4 Relés)
X96-2009PL1	X96S Tarjeta Detector de Centelleo con Modificación (Cap-11004 & 1018)
X96-2009PL2	X96S Tarjeta Detector de Centelleo modificada para salida de 0-20mA en vez de RTD
X96-2009PL3	X96S Tarjeta Detector de Centelleo modificada para salida de 0-10VDC en vez de RTD
X96-2029PL	Tarjeta PCB, Nivel de Moldura, Entrada/Salida para Centelleo
X96C148	X96S Modulo de Fuente de Alimentación de 85V a 230V AC
X96C148-2	X96S Modulo de Fuente de Alimentación de 24V DC
X96C148-4	X96S Modulo de Fuente de Alimentación de 12V DC entrada, 24V DC salida, 50 watt

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

ESPECIFICACIONES

MODELO X96S

Computador de Proceso:	Unidad basada en microprocesador con pantalla de cristal líquido (LCD), interface con botones pulsador, Comunicaciones HART [®] , salidas de control de proceso, entradas de control de proceso, comunicaciones seriales.
Chasis:	Montaje en Rack 19," Montaje en Superficie o Montaje en Panel
Caja:	NEMA-4 Estándar NEMA-4X Acero Inoxidable A Prueba de Explosión
Eléctrico:	Entradas de Alimentación: 90 a 24 VAC +/- 15%, 50/60 Hz; 24 VDC +/- 15%
Medio Ambiente:	Rangos de Temperatura Ambiente: 14° a 122° F° (-10° a 50° C) Humedad: 90% Sin Condensación
Electrónica:	Procesador: Procesador 80 x 86 Compatible Integrado Memoria: Flash, RAM Estática, RAM con batería de Respaldo Convertidores A/D: 16-bit, Doble Pendiente, Auto-Cero Pantalla: LCD Gráfica, Fondo con iluminación Fluorescente
Entradas: (Opcional)	Tacómetro: 0-10 VDC, 4-20 mA, o Frecuencia de Pulso con Carga TTL Detector: 0,42 - 2,4 VDC o Pulso TTL Compensación de Temperatura: 100 Ohm Pt, 120 Ohm Ni, o 4-20 mA (Flujo Másico o Densidad)
Salidas: (Opcional)	Tres 4-20 mA; Uno asignado a cada Canal Cuatro Relés con Puntos de Ajuste Individuales SPDT: 3 Amp a 28 VDC o 240 VAC Pulso Totalizador Remoto: Pulso de 20 mseg, Colector Abierto 50 mA a 24 VDC
Unidades de Visualización:	(Unidades de Ingeniería por Medidor) Nivel: in (pulgadas), ft (pies), mm, cm, o m Densidad: % Sólidos; SpG, Baume H, Baume L, API, Brix, Ball, o Twaddell Flujo Másico: lb/mn, kg/min, mT/min, mT/hr, sT/min, sT/hr, IT/min o IT/hr Peso: lb/min, kg/min, mT/hr, sT/hr, IT/hr, kg/hr o oz/min
Interface del Computador:	HART® y Comunicaciones

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

8050 Production Drive • Florence, KY 41042

Phone: (859) 342-8500 • Fax: (859) 342-6426 • Website: www.ronan.com • E-mail: ronan@ronanmeasure.com

Updated September 28, 2017

 RONAN ENGINEERING COMPANY – MEASUREMENTS DIVISION

 8050 Production Drive • Florence, KY 41042

 Phone: (859) 342-8500 • Fax: (859) 342-6426 • Website: www.ronan.com • E-mail: ronan@ronanmeasure.com

 Updated September 28, 2017
 51